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Abstract

A new numerical approach for solving linear optimal control problems is proposed. The

approach is based on the perturbation of control improvement condition. The conditions for

method convergence are defined.
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1 Introduction

In works [1,2] the methods of nonlocal improvement based on the non-standard

formulas of the functional increment are constructed in the class of linear and poly-

nomial with respect to state optimal control problems.

Absence of parametrical variations operation at every iteration and possibility of

extreme controls improvement cause the high efficiency of the constructed methods.
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spect to t on the set Rn × T . For admissible controls u(t), t ∈ T , the set V of

piecewise continuous functions with values in the convex set U ⊂ Rm is considered.

The initial state x0 and the control interval T are given.

In the problem (1), (2) the Pontryagin’s function has the following structure

H(ψ, x, u, t) = H0(ψ, x, t) + 〈H1(ψ, x, t), u〉 ,

H0(ψ, x, t) = 〈ψ, b(x, t)〉 − d(x, t), H1(ψ, x, t) = AT (x, t)ψ − a(x, t),

with ψ ∈ Rn being the adjoint variable.

Let us introduce standard adjoint vector system

ψ̇(t) = −Hx(ψ(t), x(t), u(t), t), ψ(t1) = ϕx(x(t1)), t ∈ T. (3)

For admissible control v ∈ V , by x(t, v), t ∈ T , we denote a solution of the system

(2) as u(t) = v(t); by ψ(t, v), t ∈ T , we denote a solution of the system (3) as

u(t) = v(t), x(t) = x(t, v).

Let PU be a projection operator on the set U in Euclidean norm:

PU (z) = arg min
w∈U

(‖w − z‖), z ∈ Rm.

For admissible control u ∈ V , let us form the vector-valued function uα with the

parameter α > 0 using the relation

uα (ψ, x, t) = PU (u(t) + αH1(ψ, x, t)) , x ∈ Rn, ψ ∈ Rn, t ∈ T.

In view of fulfillment the Lipschitz condition for the operator PU , the function uα

is continuous in (ψ, x) ∈ Rn × Rn and piecewise continuous with respect to t ∈ T .

According to the known projection property, the following inequality exists

〈H1(ψ, x, t), uα(ψ, x, t)− u(t)〉 ≥ 1
α
‖uα(ψ, x, t)− u(t)‖2 .

Using the function uα the maximum principle for the control u ∈ V in the problem

(1), (2) can be written in the following form

u(t) = uα(ψ(t, u), x(t, u), t), t ∈ T. (4)
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Note that, to fulfill the maximum principle, it is sufficient to examine the condition

(4), at least for one α > 0.

Let us introduce a modified adjoint vector system

ṗ(t) = −Hx − 1
2
Hxxz, p(t1) = −ϕx − 1

2
ϕxxz. (5)

For admissible controls u, v designate by p(t, u, v), t ∈ T – a solution of system

(5), for ψ = p(t), x = x(t, u), u = u(t), z = x(t, v) − x(t, u). It is evident that

p(t, u, u) = ψ(t, u), t ∈ T .

Using modification (5) of adjoint system in the problem (1), (2), the formula for

the increment of the functional without remainder term of the Taylor series expansion

can be obtained [2]:

∆vΦ(u) = −
∫

T
∆v(t)H(p(t, u, v), x(t, v), u(t), t)dt,

This formula is the basis for construction of nonlocal improvement condition.

3 Control Improvement Condition

Let us set the control improvement problem for u0 ∈ V with respect to functional

(1): to find a control v ∈ V satisfying the condition Φ(v) ≤ Φ(u0).

Let us consider the improvement boundary-value problem [3] based on the map

uα in problem (1), (2)

ẋ(t) = f(x(t), uα(p(t), x(t), t), t), x(t0) = x0, (6)

ṗ(t) =−Hx(p(t), x(t, u0), u0(t), t)

− 1
2
Hxx(p(t), x(t, u0), u0(t), t)(x(t)− x(t, u0)),

p(t1) = −ϕx(x(t1, u0))− 1
2
ϕxx(x(t1, u0))(x(t1)− x(t1, u0)). (7)
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Let xα(t), pα(t), t ∈ T be a solution of this problem. It is evident that xα(t) =

x(t, vα), pα(t) = p(t, u0, vα), t ∈ T . Then the output control vα(t) = uα(pα(t), xα(t), t),

t ∈ T provides lack of increase of target functional with the estimate

Φ(vα)− Φ(u0) ≤ − 1
α

∫

T

∥∥vα(t)− u0(t)
∥∥2

dt (8)

in view of fulfillment the known projection property.

Such a improvement boundary-value problem is considerably easier than the

boundary-value problem of maximum principle, and is reduced to two Cauchy prob-

lems in linear on state problem (1), (2) (the matrix function A(x, t), vector-valued

functions b(x, t) and a(x, t), and functions ϕ(x), d(x, t) are linear with respect to x).

Pair ((x(t, u0), ψ(t, u0)), as t ∈ T satisfies the improvement boundary value prob-

lem for control u0 satisfied to Pontryagin’s maximum principle.

Developed procedure allows to improve controls, satisfied to Pontryagin’s maxi-

mum principle, on account of non-unique solution of a improvement boundary value

problem.

Define improvement condition in control space that is equivalent to the nonlocal

boundary-value improvement problem (6), (7) in state space.

Let (xα(t), pα(t)), t ∈ T be a solution of the boundary-value problem (6), (7) in

state space. Then the admissible control vα(t) = uα(pα(t), xα(t), t), t ∈ T satisfies

the condition

v(t) = uα(p(t, u0, v), x(t, v), t), t ∈ T (9)

in control space. On the contrary, if vα(t), t ∈ T is an admissible control that is

satisfying the relation (9), then pair (x(t, vα), p(t, u0, vα)), as t ∈ T satisfies the

boundary value problem (6), (7). So, the boundary-value improvement problem (6),

(7) in state space reduces to the condition (9) on the set of admissible controls V .

In the problem (1), (2), linear with respect to state, for solving the improvement

control problem u0 ∈ V it is sufficient to solve two Cauchy problems in state space.
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Note that here the condition (9) has the following form

v(t) = uα(ψ(t, u0), x(t, v), t), t ∈ T.

In the problem (1), (2), nonlinear with respect to state, for improvement u0 it is

possible to use method for solving the relation (9) on the set of admissible controls.

The difficulties in realization of the condition (9) are analogous to difficulties in

solving the corresponding boundary-value improvement problem. In common case

these difficulties are connected with features of projective mapping uα.

4 Projective Perturbation Method

For given control u0 ∈ V and fixed α > 0 let us represent the improvement condition

(9) in control space in the form

v(t) = PU (u0(t) + αH1(p(t, u0, v), x(t, v), t)), t ∈ T. (10)

Let us consider a projection parameter α > 0 as a perturbation parameter, and

call the condition (9) perturbed. The unperturbed condition is obtained from the

perturbed one (10) as α = 0, and has the obvious solution v(t) = u0(t), t ∈ T .

The iterative process for solving the perturbed relation (10) has the form

vk+1(t) = PU (u0(t) + αH1(p(t, u0, vk), x(t, vk), t)), t ∈ T, k ≥ 0. (11)

An initial approximation v0 ∈ V as k = 0 is prescribed on the initial (zero) iteration.

Let us formulate conditions for process convergence (11) on the set V = {v ∈
C(T ) : v(t) ∈ U, t ∈ T}. For this purpose we will describe the perturbed problem

(10) with respect to parameter α > 0 and the process (11) for solving this problem

in the operator form

v = Gα(v), v ∈ V, (12)

vk+1 = Gα(vk), k ≥ 0, (13)
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where operator Gα is a superposition of three operators.

The first operator P is defined on the basis of the adjoint system using the relation

P (v) = p, v ∈ V, p(t) = p(t, u0, v), t ∈ T.

The second operator X is defined by solution x(t, v), t ∈ T for the phase system

X(v) = x, v ∈ V, x(t) = x(t, v), t ∈ T.

The third operator V α has the following form

V α(p, x) = vα, p ∈ C(T ), x ∈ C(T ), vα(t) = uα(p(t), x(t), t), t ∈ T.

Finally, Gα is represented in the form of composition

Gα(v) = V α(P (v), X(v)), v ∈ V.

In view of properties of the projection operator PU the mapping Gα, α > 0 is a

single-valued.

The unperturbed problem

v = G0(v), v ∈ V

is defined by the operator G0 : v → u0, v ∈ V . Therefore, u0 is a unique solution of

the unperturbed problem. In this case G0 is obtained from Gα, if assume α = 0.

The iterative process (13) has a form of standard simple iteration method for

solving the operator equation (12). Conditions of convergence of simple iteration

method can be defined on the basis of the known principle of contraction mappings.

Let us formulate an analog of the known theorem [4].

Consider the operator G : V → V , acting on the set V in completed normalized

space of functions, that are defined on the set T with values in the compact set

U ⊂ Rm, with the norm‖·‖V .
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For solving the operator equation

v = G(v), v ∈ V (14)

the simple iteration method is considered

vk+1 = G(vk), k ≥ 0. (15)

Theorem 1. Let the operator G satisfies the Lipschitz condition in the ball B(v0, l) =

{v ∈ V : ‖v − v0‖V ≤ l, v0 ∈ V, l > 0} with a constant 0 < M = M(v0, l) < 1

‖G(v)−G(u)‖V ≤ M ‖v − u‖V , v ∈ B(v0, l), u ∈ B(v0, l),

moreover, the following condition is fulfilled

‖G(v0)− v0‖V ≤ (1−M)l.

Then the equation (14) has a unique solution v̄ ∈ B(v0, l) and the simple iteration

method (15) converges to v̄ in the norm ‖·‖V at any initial approximation v0 ∈
B(v0, l). The following estimate is correct for method error

∥∥∥vk − v̄
∥∥∥

V
≤ Mk

∥∥v0 − v̄
∥∥

V
, k ≥ 0.

The theorem proof is similar to the proof illustrated in the work [4].

Assume that the family of phase trajectories is bounded on the set V :

x(t, v) ∈ X, t ∈ T, v ∈ V,

where X ⊂ Rn is a convex compact set.

Note that the sufficient boundedness condition is fulfillment of the known esti-

mate [1], [2]

‖f(x, u, t)‖ ≤ C(‖x‖+ 1), x ∈ Rn, u ∈ U, t ∈ T.
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Since the function f(x, u, t) = A(x, t)u + b(x, t) is quadratic with respect to x,

the Lipschitz condition is fulfilled

‖f(x, u, t)− f(y, u, t))‖ ≤ M1 ‖x− y‖ , x ∈ X, y ∈ X, u ∈ U, t ∈ T.

where M1 = const > 0.

Hence, using the Gronwall-Bellman lemma [1], [2] it is possible to show that the

operator X satisfies the Lipschitz condition

‖X(u)−X(v)‖C ≤ M2 ‖u− v‖C , u ∈ V, v ∈ V,

where M2 = const > 0.

Note that by virtue of linearity of the adjoint system the boundedness condition

for the family of adjoint trajectories is fulfilled on the basis of the sufficient condition

p(t, u0, u) ∈ P, t ∈ T, u ∈ V,

where P ⊂ Rn is a convex compact set.

Hence, taking into account the Lipschitz condition for operator X, it is easy to

obtain the Lipschitz estimate for the operator P

‖P (v)− P (u)‖C ≤ M3 ‖v − u‖C , v ∈ V, u ∈ V,

where M3 = const > 0.

On the basis of the Lipschitz condition for the projection operator PU we obtain

‖uα(p(t), x(t), t)− uα(q(t), y(t), t)‖ =α ‖H1(p(t), x(t), t)−H1(q(t), y(t), t)‖

≤ αM4(‖p− q‖C + ‖x− y‖C),

where t ∈ T, p, x, q, y ∈ C(T ), and M4 = const > 0. Therefore,

‖V α(p, x)− V α(q, y)‖C ≤ αM4(‖p− q‖C + ‖x− y‖C), p, x, q, y ∈ C(T ).
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So, the operator V α satisfies the Lipschitz condition with a constant, proportional

to parameter α > 0. From estimations it follows that the operator Gα satisfies the

Lipschitz condition with a constant, proportional to α > 0

‖Gα(v)−Gα(u)‖C ≤ α(M2 + M3)M4 ‖v − u‖C , v ∈ V, u ∈ V.

On the whole, by Theorem 1, the iterative process (13) at small α > 0 converges to a

unique solution of the perturbed problem (14) for any initial approximation v0 ∈ V .

So, the following convergence theorem is proved.

Theorem 2. Let the family of phase trajectories in the problem linear with respect

to control and quadratic with respect to state (1), (2) with the convex compact set

U ⊂ Rm be bounded:

x(t, u) ∈ X, t ∈ T, u ∈ V,

where X ⊂ Rn is a convex compact set.

Then for a sufficient small projection parameter α > 0

1) the problem (14) has a unique solution v̄α ∈ V ;

2) the iterative process (15) converges in the norm ‖·‖C to a solution v̄α for any

initial approximation v0 ∈ V .

Note that under conditions of theorem 2 the solution of the perturbed problem

(10) for control u0 ∈ V , satisfying the maximum principle, coincides with u0 since

its uniqueness.

For initial approximation of iterative processes (11) in solving the perturbed

problem (10) for control u0 ∈ V , that is not satisfying the maximum principle, it

is possible to choose the initial approximation v0 = u0. In this case for sufficiently

small α > 0, according to theorem 2 and the improvement estimate (8), the strict

improvement of control u0 of iterative processes is guaranteed.

Note that in projective perturbation method the control u0 ∈ V is being improved

by solving the perturbed problem (10) for any perturbation parameter α > 0.
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